KCNQ/Kv7 channel regulation of hippocampal gamma-frequency firing in the absence of synaptic transmission.
نویسندگان
چکیده
Synchronous neuronal firing can be induced in hippocampal slices in the absence of synaptic transmission by lowering extracellular Ca2+ and raising extracellular K+. However, the ionic mechanisms underlying this nonsynaptic synchronous firing are not well understood. In this study we have investigated the role of KCNQ/Kv7 channels in regulating this form of nonsynaptic bursting activity. Incubation of rat hippocampal slices in reduced (<0.2 mM) [Ca2+]o and increased (6.3 mM) [K+]o, blocked synaptic transmission, increased neuronal firing, and led to the development of spontaneous periodic nonsynaptic epileptiform activity. This activity was recorded extracellularly as large (4.7 +/- 1.9 mV) depolarizing envelopes with superimposed high-frequency synchronous population spikes. These intraburst population spikes initially occurred at a high frequency (about 120 Hz), which decayed throughout the burst stabilizing in the gamma-frequency band (30-80 Hz). Further increasing [K+]o resulted in an increase in the interburst frequency without altering the intraburst population spike frequency. Application of retigabine (10 microM), a Kv7 channel modulator, completely abolished the bursts, in an XE-991-sensitive manner. Furthermore, application of the Kv7 channel blockers, linopirdine (10 microM) or XE-991 (10 microM) alone, abolished the gamma frequency, but not the higher-frequency population spike firing observed during low Ca2+/high K+ bursts. These data suggest that Kv7 channels are likely to play a role in the regulation of synchronous population firing activity.
منابع مشابه
Coupling of L-type Ca Channels to KV7/KCNQ Channels Creates a Novel, Activity-Dependent, Homeostatic Intrinsic Plasticity Abbreviated Title: KV7/KCNQ Channel-Mediated Intrinsic Plasticity
Experience-dependent modification in the electrical properties of central neurons is a form of intrinsic plasticity that occurs during development and has been observed following behavioral learning. We report a novel form of intrinsic plasticity in hippocampal CA1 pyramidal neurons mediated by the KV7/KCNQ and CaV1/L-type Ca 2+ channels. Enhancing Ca influx with a conditioning spike train (30H...
متن کاملCoupling of L-type Ca2+ channels to KV7/KCNQ channels creates a novel, activity-dependent, homeostatic intrinsic plasticity.
Experience-dependent modification in the electrical properties of central neurons is a form of intrinsic plasticity that occurs during development and has been observed following behavioral learning. We report a novel form of intrinsic plasticity in hippocampal CA1 pyramidal neurons mediated by the KV7/KCNQ and CaV1/L-type Ca2+ channels. Enhancing Ca2+ influx with a conditioning spike train (30...
متن کاملCoupling of L-Type Ca Channels to KV7/KCNQ Channels Creates a Novel, Activity-Dependent, Homeostatic Intrinsic Plasticity
Wu WW, Chan CS, Surmeier DJ, Disterhoft JF. Coupling of L-type Ca channels to KV7/KCNQ channels creates a novel, activity-dependent, homeostatic intrinsic plasticity. J Neurophysiol 100: 1897–1908, 2008. First published August 20, 2008; doi:10.1152/jn.90346.2008. Experience-dependent modification in the electrical properties of central neurons is a form of intrinsic plasticity that occurs durin...
متن کاملKv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release.
M-current (I(M)) plays a key role in regulating neuronal excitability. Mutations in Kv7/KCNQ subunits, the molecular correlates of I(M), are associated with a familial human epilepsy syndrome. Kv7/KCNQ subunits are widely expressed, and I(M) has been recorded in somata of several types of neurons, but the subcellular distribution of M-channels remains elusive. By combining field-potential, whol...
متن کاملKv7/KCNQ channels control action potential phasing of pyramidal neurons during hippocampal gamma oscillations in vitro.
While the synaptic mechanisms involved in the generation of in vitro network oscillations have been widely studied, little is known about the importance of voltage-gated currents during such activity. Here we study the role of the M-current (I(M)) in the modulation of network oscillations in the gamma-frequency range (20-80 Hz). Kv7/KCNQ subunits, the molecular correlates of I(M), are abundantl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 95 5 شماره
صفحات -
تاریخ انتشار 2006